On zero locations of predictor polynomials

نویسندگان

  • Fermin S. V. Bazán
  • Licio H. Bezerra
چکیده

Predictor polynomials are often used in linear prediction methods mainly for extracting properties of physical systems which are described by time series. The aforementioned properties are associated with a few zeros of large polynomials and for this reason the zero locations of those polynomials must be analyzed. We present a linear algebra approach for determining the zero locations of predictor polynomials, which enables us to generalize some early results obtained by Kumaresan in the signal analysis field. We also present an analysis of zero locations for time series having multiple zeros. © 1997 by John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the duality between line-spectral frequencies and zero-crossings of signals

Line spectrum pairs (LSPs) are the roots (located in the complex-frequency or -plane) of symmetric and antisymmetric polynomials synthesized using a linear prediction (LPC) polynomial. The angles of these roots, known as line-spectral frequencies (LSFs), implicitly represent the LPC polynomial and hence the spectral envelope of the underlying signal. By exploiting the duality between the time a...

متن کامل

Comparative study on solving fractional differential equations via shifted Jacobi collocation method

In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...

متن کامل

ORTHOGONAL ZERO INTERPOLANTS AND APPLICATIONS

Orthogonal zero interpolants (OZI) are polynomials which interpolate the “zero-function” at a finite number of pre-assigned nodes and satisfy orthogonality condition. OZI’s can be constructed by the 3-term recurrence relation. These interpolants are found useful in the solution of constrained approximation problems and in the structure of Gauss-type quadrature rules. We present some theoretical...

متن کامل

Modified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations

As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...

متن کامل

Chromatic polynomials of random graphs

Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009New J. Phys. 11 023001) nowmake it possible to compute chromatic polynomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1997